首页> 外文OA文献 >Permutation Search Methods are Efficient, Yet Faster Search is Possible
【2h】

Permutation Search Methods are Efficient, Yet Faster Search is Possible

机译:排列搜索方法是有效的,但更快的搜索是可能的

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We survey permutation-based methods for approximate k-nearest neighborsearch. In these methods, every data point is represented by a ranked list ofpivots sorted by the distance to this point. Such ranked lists are calledpermutations. The underpinning assumption is that, for both metric andnon-metric spaces, the distance between permutations is a good proxy for thedistance between original points. Thus, it should be possible to efficientlyretrieve most true nearest neighbors by examining only a tiny subset of datapoints whose permutations are similar to the permutation of a query. We furthertest this assumption by carrying out an extensive experimental evaluation wherepermutation methods are pitted against state-of-the art benchmarks (themulti-probe LSH, the VP-tree, and proximity-graph based retrieval) on a varietyof realistically large data set from the image and textual domain. The focus ison the high-accuracy retrieval methods for generic spaces. Additionally, weassume that both data and indices are stored in main memory. We findpermutation methods to be reasonably efficient and describe a setup where thesemethods are most useful. To ease reproducibility, we make our software and datasets publicly available.
机译:我们调查基于排列的近似k最近邻居搜索的方法。在这些方法中,每个数据点都由按到该点的距离排序的数据点的排序列表表示。这样的排序列表称为置换。基本假设是,对于度量空间和非度量空间,置换之间的距离都可以很好地替代原始点之间的距离。因此,应该有可能通过仅检查排列与查询的排列相似的数据点的一小部分子集来有效地检索最真实的最近邻居。我们通过进行广泛的实验评估进一步检验了该假设,在该评估中,置换方法与来自各种实际的大型数据集的最新基准(基于多探针LSH,VP树和基于接近度图的检索)相抵触。图片和文字领域。重点是通用空间的高精度检索方法。另外,我们假设数据和索引都存储在主存储器中。我们发现置换方法相当有效,并描述了这些方法最有用的设置。为了简化可重复性,我们将软件和数据集公开提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号